Computational Information Geometry in Statistics: Theory and Practice

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational Information Geometry in Statistics: Theory and Practice

A broad view of the nature and potential of computational information geometry in statistics is offered. This new area suitably extends the manifold-based approach of classical information geometry to a simplicial setting, in order to obtain an operational universal model space. Additional underlying theory and illustrative real examples are presented. In the infinite-dimensional case, challeng...

متن کامل

Computational information geometry: theory and practice

This paper lays the foundations for a unified framework for numerically and computationally applying methods drawn from a range of currently distinct geometrical approaches to statistical modelling. In so doing, it extends information geometry from a manifold based approach to one where the simplex is the fundamental geometrical object, thereby allowing applications to models which do not have ...

متن کامل

Computational Information Geometry in Statistics: Mixture Modelling

This paper applies the tools of computation information geometry [3] – in particular, high dimensional extended multinomial families as proxies for the ‘space of all distributions’ – in the inferentially demanding area of statistical mixture modelling. A range of resultant benefits are noted.

متن کامل

Computational Information Geometry in Statistics: Foundations

This paper lays the foundations for a new framework for numerically and computationally applying information geometric methods to statistical modelling.

متن کامل

Computational Geometry: Theory and Applications

Article history: Received 14 August 2006 Received in revised form 11 April 2008 Accepted 12 April 2008 Available online 27 April 2008 Communicated by M.T. Goodrich

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Entropy

سال: 2014

ISSN: 1099-4300

DOI: 10.3390/e16052454